Viewing Report 20th/21st July 2019 – IMT3 Observatory & Travel Scope

Viewing time period – 21:15 – 02:15

There were two things I wanted to do tonight, one was to get first light with GingerGeek through the Skywatcher Esprit 120ED, the other was to setup my Esprit 120 on the MyT in the garden and grab a photo of the Moon to celebrate 50 years since Neil and Buzz stepped out onto the lunar surface. As a bonus I wanted to to get the guiding working on the MyT too.

As GingerGeek opened the dome on the IMT3 I setup the portable gear on the patio. I connected the setup to a 12V car battery to see how well it did at running the Mount and the camera. The initial voltage of the battery was 13.1v when I started. I connected the camera to EZCap and the Mount to TheSkyX (TSX).

Meanwhile GingerGeek opened the dome, connected the mount, opened the very geeky but cool Flip Flap covering the Esprit 120 and slewed to a bright star for deterring the focus and the position relative to the 12″ main scope.

Remarkably the focus was fairly near and after a few iterations GingerGeek managed to get the V curve sorted for good focus. Before this was done he setup the Luminance filter on the filter wheel control with SGPro that had not been configured. I then looked at the resulting image and determined the FoV within TSX. The field almost fits the 12″ and so the position is fairly close, close enough for solving and being in the right area for imaging. There was an error by SGPro complaining about 800px difference with what was to be expected, the problem being the difference in the angle of the Esprit 120 vs where the mount knows it is pointing as shown through the 12″.

Despite that we managed to take an image and then move on to see if we could guide with the 12″ off-axis guider for the Esprit. This worked a little but the guider graph was way off at various points, I believe this is potentially either a setup issue on the guider and/or the fact that we are too frequently taking too many images to correct and thus chasing the seeing. I will look at this next time are out.

Back on the portable setup, I managed to very quickly connect, perform polar alignment using the PoleMaster and the new bracket I fitted. I then slewed to a star which was not quite in the FoV so I need to spend more time on this next time I am out. No problems though, I nudged the scope and found the star. Performing a sync on this solved any further slewing problems.

I then waited for the Moon to come up over the roof tops which was unfortunately not until 2am of the 21st thus slightly missing the landing date of 20th by 2 hours (Eagle landed at 9:17pm BST) but non the less still obtaining an image of the Moon to celebrate the 50th anniversary of the first lunar landing at the time Neil put that famous foot on the Moon at 1:56am BST on the 21st July 1969 🙂

Apollo 11 50th Anniversary

GingerGeek managed to get a few images but nothing much was showing on them especially the Elephant Trunk nebula he was imaging, I suspect, but am not sure, the wrong filter was selected so probably OIII rather than Ha as a previous Frame and Focus command through SGPro for 15 seconds showed the Elephant Trunk, at this point we were taking 10 minute exposures so it should have easily been visible. Again another problem to sort next time we are out.

Viewing Report 15th July 2019 – IMT3 Observatory

Viewing time period – 21:32 – 23:48

Tonight was about taking 5 and 10min guided Ha exposures on the Elephant Trunk, IC1396. Even though the Moon is 99% full I wanted to see what the resulting star shape was now we have guiding in place.

As usual the first thing to do was open the dome, Find home on the mount and then slew to a nearby star, sync and then slew to the Elephant Trunk. The operators manual has been updated to the following but I noticed an error in that opening the dome profile disconnects the mount so I will modify the instructions. I also changed the setting for moving the telescope manually within TSX to swap the arrow keys around, this affords a much more natural experience when having to manually move the scope for one reason or another.

Telescope movement settings updated

I then checked through Sharpcap that the shutter was open and the scope pointing through it using 3 different cameras.

I then took a single frame through the Ha filter to see if I was in the right position.

1 second exposure

I measured this against the known star pattern in TSX and then using SkySafari on my iPhone I positioned the FoV to include the front of the trunk in the camera and then manually moved the equivalent FoV indicator in TSX to match the star pattern.

SkySafari iPhone, inner square FoV for 12″

Once they were matched I decided not to go through the whole refocus this evening as the Moon would ruin any image I took, instead I checked the star tightness of focus using the HFD function in SGPro. The resulting star sizes were fine for this evening even though I was focused through the luminance filter before at position 71290. Stars are always more bloated through narrow band filters anyway.

Half Flux Diameter measurements

I then moved to opening PHD2 within SGPro and selecting a guide star, although I did have to move the image slightly to find one tonight, again bright Moon.

PHD2

GingerGeek and Bob were online and GingerGeek offered advice around switching on the environmental monitor that I had forgot about. This would pull data in from the HiTech Weatherstation to add to each image.

Safety and Environment Connected

I then upped the exposure to 120 seconds, that worked well, nice round stars, then 300 seconds, again tight stars, then I took 3 images at 600 seconds. The background by this point was getting brighter due to the Moon. I had the camera (ASI1600MM) set to -20℃ below the ambient of 14℃ and it was running as can be seen below at 55%. All the images were take with Frame and Focus. GingerGeek then took over and showed me how to use Sequence and we ran into another problem. It would not let us run a sequence, it would error and complain about not being able to connect to the observatory.

SGPro 600s Image and Sequence Selected

A quick Google showed this to be a bug in SGPro, still not fixed and needing to be brought the their attention. We had originally setup the dome to rotate within SGPro, found it not very easy or very good, moved to TSX to control the dome which was easier and much better and unselected within SGPro, However because we had checkboxes ticked that the dome should be rotated in line with the mount pointing it was complaining, even though we explicitly said no dome attached. So unticking this setting worked, although we inadvertently then hung SGPro as it went to perform a focus run, I did not want it to do that, on hitting abort that hung SGPro. We needed to approach Taks Manager to resolve that.

So that was that and I then awoke this morning to pull the files down using the transfer function within Teamviewer. There are 2 was to do this, the other way , not documented here does not allow for field over 25MB to be sent, however selecting File Transfer from the pages icon at the top does.

Teamviewer File Transfer

So what does a single 10min uncalibrated frame with nearly a full Moon look like?

Single 10min Ha from ASI1600MM

And we have to remember this has not been calibrated, so not Darks, no Flats, for sure no Bias and no processing apart from a stretch to visualise the data. It is pretty smooth as a first light image! So what do 3 of these look like stacked?

30mins (3 x 10) Ha from ASI1600MM

Wow, I actually think this is going to be a cracking setup. Again no pre-processing, clearly there are doughnuts to be removed from a flat which is no big deal, well apart from I need to install the A2 flat sheet I have in the dome and in a position the scope can see. Also I will move the end of the nose of the trunk further toward the bottom to get more nebula in. So a good first light test. Now we can test the Esprit 120 ED with the SX814 on the next night. Goodnight zzzzz ……

Goodnight from IMT3 🙂

Viewing Report 14th July 2019 – IMT3 Observatory

Viewing time period – 20:29 – 23:13

This evening GingerGeek and I are going to try and get the guider in focus again. I hope we can do this so I can use the observatory remotely shortly.

On connecting to the observatory I noticed once again that after running the ZWO120MC for a while under ASICAP it went black. I have still not had a reply on the forum and it reminds me not to buy another ZWO as they are particularly bad at support.

That said there are a few things we need to try including taking the 10m USB extension out of the equation. Once I started TheSkyX and SGPro and PHD etc I could see Vega in the image for the 12″. Moving it to the centre and syncing for the moment manually until GingerGeek shows me how to sync and solve with SGPro. The final part here was moving the scope so that Vega was now in the centre of the FoV of the guider square on TheSkyX.

Vega nearly in the middle

So Mark arrived to help focus the guider whilst I looked at the screen on PHD. Before we started Bob remotely once again turned the USB power off to the All Sky Cam to reset it using Node Red. That worked so we had that camera working again.

PHD showed a very bright white screen, we had to wait over another hour for the sky to taken enough to be able to make anything out. Once we could, all we saw was the edge of the dome again.

Edge of dome through camera

It took GingerGeek a while fiddling with the focus to realise the camera on the screen was not the guider! It transpired PHD had for whatever reason picked up the other webcam mounted on one of the OTAs. No wonder we had problems.

Selecting the SX Lodestar guider from the down list in PHD brought up a picture with Vega in it! From there we had a flat topped star as Vega is too bright for the guider. So we slewed to another star nearby (mag +8) and then refined the focus on that. Next we calibrated the guider again as we had been removing and turning the guide camera.

Once done we then slewed to a star near the Meridian to test output of drift align to find that the mount is still reporting being out in dec which is possible for one of a couple of reasons, either the knobs were not tightened correctly or the mount has moved after being hit. Next weekend I will adjust if clear again, but this also means starting a whole new TPoint model.

When I drift align I will perform that on a star near the meridian and the celestial equator. I will then slew away then back and repeat. If all is well I will then test drift away from the equator to see if we have flex and if so if it is due to balance problems.

Viewing Report 12th July 2019 – IMT3 Observatory

Viewing time period – 20:32 – 22:56

After several reboots by GingerGeek who is looking after the observatory I am now logged in. I currently have the dome open and the 12″ centred on Deneb that can be clearly see whilst the Sun is still above the horizon and thus not dark yet.

The rebooting is due to hanging of the NUC. We have had various problems, the external ASI120MC with ASICAP/SharpCap and Firecap seem to cause an issue, we have a problem rebooting and the NUC just powering off and today trying to login through Windows and it was just hung. So lots of niggles.

Tonight I hope to test a single Ha guided exposure on the Elephant Trunk nebula in Cepheus to the North East as it rises and will look to image from 11pm for a few frames before closing the dome for the night. I have already noticed that Deneb is drifting in my FoV so something is still amiss with the polar alignment event though I thought I had it cracked. I will make a note to go back and check it. Currently Deneb is +42 Alt and 66 deg in Azimuth. I think the key will be looking at where I pick the star for polar alignment and making sure I have truly tightened.

So now it is nearly 10pm the sky is getting darker. The strangest thing happened, the dome closed. I only noticed as the image was blank. I checked and the Hitec Weather Station had tripped and closed the Dome. I toggled the Relay and then I could open the dome. Interestingly if you try to open the dome from TheSkyX it tries then stops and resets to closed. For the moment given the clear skies and forecast I have disconnected the Hitec Weather Station software but will reconnect later. Something else to debug.

HiTech Weather Station Software

It’s now 22:21 and dark enough to focus, I spent some time getting the auto focus routine working in SGPro. Interestingly I had to set the step size to 1000 given the 100k steps my FLI focuser is capable of. I also increased the data points to 10 and this gave me enough movement and data to get a good V curve.

I managed to get down to an HFR of on average 6 tonight at focus point 71290. It took me 3 runs to get the right figures. I then made the changes under the 12″ profile within Profile Manager and saved them for future use.

Auto Focus Run

Next I moved on to PHD2 and guiding. Once I got an image I then found I only had hot pixels and no stars. I also had a funny cone of light and something large out of focus and the edge of the tube. I then remembered GingerGeek had fitted a new guard ring to the guider camera and inadvertently moved the position due to a loose screw elsewhere on the fitting. Thus I need to go and focus that the next night out as because I am not there tonight I cannot do this. This also means I am stuck for testing a guided exposure.

Very out of focus Autoguider

So instead I tried a few different exposures with the Ha filter unguided even though I knew I had the problem with polar alignment. I took exposures at 120 seconds and 180 seconds by which time I had trailing, given as I said I had polar aligned and could image for 10 minute exposures in a different part of the sky I need to redo the aspect. Note I did not perform a second autofocus on the Ha filter. I will at some point calibrate the offsets of the filters once I have the auto guider working.

120s Ha Elephant Trunk area still not dark

So at least a useful night to try and get a few things working, a few things to add to the ToDo list but all in all a good evening.

IMT3 Build Update – V

As the first phase of the build completes for the IMT3 observatory but before the commissioning stage begins, a few other additions need to be completed. We started with adding a UPS for the Intel NUC. The dome itself for the shutter at least runs on a battery backup in case of power failure, the dome automatically shuts. What we wanted to avoid was loosing power to the house and not being able to shut the PC down gracefully until power returned. The UPS also comes with software so that we can sense the power going and then ask the PC to shutdown if needed.

UPS installed

Temporary LED lighting has been fitted but needs properly fixing and connecting into the master switch and the soft switch for turning on and off remotely. The cables meanwhile to the first of many USB hubs starts to fill up.

Rats nest of USB cables

An adapter station is fixed to the wall for the copious adapters one needs for astronomy

More adapters

Shortly followed by another due the copious adapters needed for astronomy……….

Adapter heaven

Hat hooks are added due to a few unfortunate instance with a head and the mount which concluded in a hospital trip and some superglue.

Hat hooks

Multiple weights can be seen supporting the large amount of the wieght at the business end of the mount

Weights

Whilst there is still much more to add including the imaging trains for the other OTAs and the focusers for each of them being added (Lakeside) I managed to go out one evening and get first light with the 12″ OTA on the Moon.

First light of the 12″ for focus

I started the first run of polar alignment with the PoleMaster for which I dedicated an entire blog entry to it here.

as it’s more complicated than one might think. This is the initial polar alignment through hard work and measuring twice always!

How close was our polar alignment?

Polaris is the bright star and needs to be in the white circle. Not bad for a rough alignment. I then proceeded to adjust the alignment based on this first result until the green and red square/crosses aligned. It should be noted that the accuracy for the Polemaster is ok for short focal length OTAs but for long focal length you need to use a combination of approaches which include on the Paramount using TPoint followed by drift aligning using PHD2.

Perfect polar alignment……..

So after many days building out the IMT3 the 3 geeks with their hard hats relax and have another beer.

TOSAs

And the business end of the scope starts to look more useful and beautiful to the trained eye.

IMT3

IMT3 Build Update – Part IV

So I left you with the weather station build out and will happily provide details of the software used and some of the challenges we had / have getting this working as out of the box most thing just don’t work, fortunately I have a Bob and a GingerGeek to assist 🙂

The outside takes shape with the patio being completed next to the french drain and a retaining wall being built, along with a small chimney of bricks to hold the master outside socket for the weather station.

Patio and retaining wall near French drain
Brick chimney for outside power

The last few touches have been done to the Orangery and building of a second utility room which helped as it gave me somewhere to run the Cat6 cable from the dome 🙂

Cat 6 cable

Although my cat Fluffy was curious about what it was.

Literally Cat 6 cable 🙂

The inside of the dome had the hole drilled and pipe and associated collet fitted for the dehumidifier

Dehumidifier inside connection

The dome controller fitted with the install from Pulsar sits above the electric supply as planned. The adjustment knobs for the dome rotation drive can also be seen. They did need adjusting and finally settled down after the dome slipped in various places. The only remaining issue that I may never fix is the gaps in-between the sections of the dome, when they go over the role they cause the dome to drop, judder and make a noise, really they should be tightly fitted, filled and taped.

Dome controller and rotation adjustment

During the night I rotated the dome to the various positions around the sky to map, North, East, South and West and included the offset to Polaris as can be seen below.

North and Polar North

With most of the ancillary work now done attention turned to installing the mount and the OTAs. First the Paramount ME II had to be fitted with three people in assistance to lifting. Once in place the placement and threading of cables through the mount had to take place, it always amazes me how many cables are needed to do astronomy!

MEII fitted with thru the mount cabling

The top end of the mount shows the Versa-Plate missing so that the cable can be pulled through. Several power cables and a master USB cable were fitted.

Top of ME II without Versa-Plate

Finally the first of the 3 OTAs are fitted, this is the Officinal Stellare 305mm RiDK that the other 2 OTAs would piggy-back on.

OS 12″ RiDK

Luckily we opted for a 2.7m dome else we would not have fitted this setup in here.

First scope on mount

Next came the fitting of the Takahashi FS102 refractor and the Sky-Watcher Esprit 120ED refractor. First the clamshell for the Tak is fitted, also the first dry fitting of the QHY1600MM camera and 7 position filter wheel, the adapters to connect it would cane later.

Tak Clamshell and QHY camera

Then the Tak is fitted. As can be seen from this image taken later, we had to make a new counterweight system to offset the slightly lighter Tak with the heavier Esprit 120. This novel system designed by Bob used standard astronomy weights and bars from skywatcher mounts.

Tak 102 and weights

Next the Skywatcher 120 is fitted carefully to the other side.

Skywatcher 120

Next some more ancillary work is needed before the final setup is shown…….

IMT3 Build Update – Part III

So in my last post I left you with the pier being fitted, this is just the start of the journey to be able to place the mount and telescope OTA’s Optical Tube Assembly on top. All of that would require power! And to fix all the power to the pier I needed a piece of wood which I had handy in the garage.

Once fitted this became one of two panels within the dome. We really wanted to keep the power and data and associated cables to two places. This would have a the MEII power supply at the top, a power strip to the right, the master power coming in from below and to a 2-way switch, there would be additions to this later.

The other board would sit by the incoming power and data supplies near the edge and Eastern side of the dome. A master switch for the lights, another power strip, a waterproof box for the MacMini, later to be changed to an Intel NuC due to software issues that we later realised we could fix 🙁 A 10 port USB hub (one of many), master Ethernet port for the incoming network connection from the house and providing 330MB into the dome and finally the master double socket for the electric.

Meanwhile the view from the Orangery was great, with the dome taking shape, although the plan is to have fencing and planting to soften the view for others.

The floor of the dome was painted with garage floor paint to seal in the concrete. It would transpire that the rubber matting I would later fit would need a DPC membrane under it to stop the build up of condensation caused by the cold concrete against the warmer rubber.

Meanwhile, we continued outside with building the supporting infrastructure, including a master soak-away and putting in the weather station pole and associated instruments. GingerGeek spent time helping dig the soak-away, we dug down either side of the concrete to the North and West which would be backfired with 20mm shingle.

A hole was then dug for the drainage for the dehumidifier, a must for any observatory. The plant pot has holes drilled in and was then filled with shingle to stop any soil from backfilling over time.

Round to the West of the dome we started to dig out the section for the soak-away.

I had purchased a sturdy large plastic container (I could stand on it without it flexing) and then drilled a fair amount of holes in it. It was then buried in the ground, connected to a standard large drainage pipe typically found taking waster from the house and connected that into it, completing the connection with several guns of mastic.

This was then connected to the plastic french drain we had previously dug out for and fitted.

Once this was done we laid the 20mm gravel to the entire North and West of the dome to cover, the plant pots as a reminder of where the soak-away was.

The pipe for the dehumidifier was covered with a standard plumbing pipe insulating cover to protect it from frost

The weather station fitting was a pole Bob had purchased and found brackets to fit to the fence to the West. The top instrument is a cloud monitor and rain detector from HiTech Astro and works well. We have it connected to the dome through a relay Bob put together so once cloud is detected or rain the dome closes and will not open unless you override in the software. The instrument to the right is the Sky Quality Meter provided by GingerGeek and is fantastic and telling you how dark it is and when my neighbours put their lights on or God forbid don’t turn them off all night …….. A further instrument was added later for an All Sky Camera which is a ZWO ASI120MC that Bob placed inside a dome and then connected through

IMT3 Build Update – Part II

So the dome was built in a day, which was clearly quicker than Rome 🙂 The video of the construction can be seen below. The new Orangery is to the right and the building mess within my garden is apparent.

IMT3 Timelapse Construction

With all the planning, I was always slightly nervous the cable pipes we had now concreted in place would not be in the correct positions. I required a set outside the dome, a set just inside where the electrics and computers would sit and a set near the pier. Fortunately I was pleased I measured twice 🙂

Cable run just inside the dome
Cable run outside the dome
Cable run by the pier

As you can see above the pier was fitted centrally which is what I wanted rather than offset as some suggest. The pier was a standard pulsar pier and took some time after fitting by Pulsar themselves to settle. As can be seen below, they fitted rods and bolts to secure and used a resin in the holes drilled.

Pier bolts now tight

This was different than my last observatory where I used long 12″ bolts. After tightening with a spanner the pier seemed secure but upon placing weight on it it started to move. I then tightened to the point where it was still vibrating a lot. I left a week to settle then came back with a torque wrench to tighten again. This drew the bolts out by about an inch which told me the resin had not gone off. Another week went by and I tightened a little more, this time the wrench kicked in with clicking and the bolts held, the pier stopped vibrating and all is finally well including the top plate fitted but Pulsar with a standard Meade pre drilled pattern.

Standard Meade pre drilled top (notch to the left is North)

I asked for the pier to be central and gave the Pulsar team the direction for North using a compass on my phone and checking with a traditional compass. Hopefully this would get me near the North Celestial pole once we fitted the Paramount MEII mounting plate we had. It turned out a few new holes needed to be drilled in our slightly used plate which to be fair was used for previous telescope mounts including a Meade 16″, Skywatcher EQ6, Paramount ME and now the MEII.

You can see Bob’s name proudly punched into the aluminium as well as the original manufacturing date of 2008.

IMT3 Build Update – Part I

Ok so it’s been a while, well more than a while, as Douglas Adams once said, ‘you thought it was a long way down the road to the chemist’ well I can tell you it’s a long road to building a commissioning an off the shelf observatory too! So even though the observatory is nearly complete I though I would share the build experience here on this very blog.

So it’s not been helped by the weather, it’s not been helped by the other building work on the house and it’s definitely not been helped by working so much either. The Ripton Windows team, incidently who are building a lovely Orangery for me as well as some other works, were also good enough to take on building the base and laying the electrics and network access.

The base for the pier was a single discrete 1m cube of concrete and surrounding that a slab of concrete of 3m square and 150mm deep. This was so the pier is isolated from any vibrations from the dome rotating or people walking about inside the dome.

The team from Ripton took a few days to dig the hole, pour the concrete in a couple of stages and then we had many weeks for it to set due to a delay in the Pulsar 2.7m dome arriving for install. I also laid a shingle surround to act as a french drain and included a homemade soaraway, more pictures later.

Work started with digging out from the outside in using a JCB, the team did a quick and good job, considering all the clay.

After some rain holding off the final dig, the team managed to dig out the rest of the base including the much deeper but separate 1m cube.

Scalpings were then laid and shuttering to act as a former for the central cube was fitted, this included DPC to help keep the cube from being effected by the surrounding area. PVC piping was also added before the mix was poured for the data and electric cable runs.

Before long the concrete was poured for both the inner and outer segments, now you can see the level below ground to which we dug to make sure we were inside the planning rules for the area.

Creating my very own stone henge, allowed me to see where the dome would finally come to.

I then went one stage further and placed a plastic pipe vertically to see the height of the final dome once fitted.

Finally my favourite electrician Steve fitted the main power to the outside and included CAT6 cable back to the main fibre hub for me.

This was run under the ground through plastic pipe, even though the cable was armoured, in case we wanted to run additional cables later.