Image Processing Notes for CMOS Using Flat Darks

I thought I ought to document this so that I remember this is now the new normal for making a flat master for my CMOS camera, the ZWO ASI1600MM. The problem I found again after not processing images for some time, was that the normal way of processing without Flat Darks produces a master flat with embossed, so raised doughnuts across the image.

Batchpreprocessing – > Darks tab -> Optimization Threshold -> move from 3 to 10 – > this removes the dark entirely and also removes the amp glow but introduces loads of noise so clearly not right at all. So I contacted my friend Dave Boddington who is a bit of an expert on this topic and he gave me some good advice that has of course worked.

So first let’s detail what I am calibrating. On the 20th April 2020 I took a set go Ha frames of M84, these were 300s exposure and with a Gain of 193 and I believe an Offset of 21, however we had some changes over the previous week so driver the Offset is no longer stored in the FITS header. It was when we were using the ZWO native driver. The temperature of the cooler was set to -26℃. I have 8 of these frames.

M94 300s light

I also have a set of 10 darks at the same settings. However when using the Statistics tool Dave noticed the Mean of the image was 800 and the Mean of the Ha frame was 353. This is in a 16 bit notation. The camera however is a 12 bit camera and this means the Mean for the dark is 50 and the Mean for the Ha is 22, so a difference of 28 in 12 bit and 447 in 16 bit. I will come back to this later.

Mean of Ha 300s light
Mean of Dark 300s

First I created a Master Dark for the Ha frames using the normal ImageIntegration settings. I did not calibrate darks with Bias as you do not need bias with a CMOS cooled camera. Next I created a Master Flat Dark for the Flat frames using the same ImageIntegration settings.

Single 300s Dark with hot pixels and amp glow

Then I found the Ha images did not need to have the flats applied so I skipped that step for the narrowband images. Next I Calibrated the Ha lights with ImageCalibration and because of that discrepancy above which looks like it was induced by having the Offset for the darks set to 12 and the Offset for the lights set to 21 I added 600 as suggested by Dave Boddington to the Output Pedestal in the Output files section of ImageCalibration. I made sure Evaluate Noise was ticked and that both Calibrate and Optimise were unticked in the Master Dark section. Master Bias was unticked and so was Master Flat for the narrow band images as mentioned.

Calibrating Ha lights with Master Dark

This created a clean set of calibrated Ha lights that did not require flats to be applied.

Calibrated 300s Ha light with Master Dark

Next I had some issues in Star Aligning the frames. The error I received was ‘Unable to find an initial set of putative star pair matches’, due to the frames being very sparsely filled with stars and the background being quite light compared to the stars. A quick look on the PI forum showed increasing the Noise Reduction in the Star Detection section from 0 to 4 sorted the issue, with all but 1 frame being aligned. I was then down to 7 x 300s Ha lights. The final frame was very light due to cloud.

7 x 300s Ha Calibrated with Darks, Aligned and stacked

I then integrated these 7 frames together. I had a challenge with trying to get the hot pixels in a few areas to disappear using Cosmetic Correction and pixel rejection during stacking so I will remove these after by hand before combining into the larger set

hot pixels not removed

So in essence what I have learnt is that I need to have really clean filters and camera glass. That all the doughnuts are on the those surfaces and not anywhere else. That the flats must be between 22k and 26k for the CMOS cameras, although this has some tolerance either way. That I need to set the camera to the right Gain, Offset and Temp as the lights and that I need the right flats for the right lights!

Viewing Report 26th May 2020 – IMT3

21:00 – 00:46

All Sky Camera

Opened dome at 4pm to start cooling the 12″, but actually started to play by looking at guider on the 12″ at 9pm. The guider had never really produced round stars and I suspected this was due to it not being pushed all the way in, far enough to be in the sweet spot for focus.

So I took off and adjusted with a spacer of which I had many in different thicknesses. I found the ideal one to fit that would allow the filter wheel Now round stars. Given high cloud I have set running on M5 LRGB, 60 x 60 seconds L / 30 x 60s RGB. Not guiding. Gain 139 Offset 21. Cooler -15. to rotate far enough that it did not fowl the guide camera, which until now it had. Now this was done, it was time to test.

Round guider stars

The images were much better, the stars tight and round. I also changed the rotation of the guider so that its chip was square to the rectangular whole in the light pickoff shaft.

Stretched M5

So now that was achieved I went off to image M5, but without the guider as I could not find a guide star……..typical. I chose M5 as we have some frames from a previous night in May but focus was not as good as tonight and the ADU was too high. I left the scope running 60 x Luminance and 30 x RGB and went to bed.

Images captured for M5

Addendum. The dome shut when the Sun started to rise which is fantastic and working as designed. What is not is the AAG must have hung and although I could see in Windows Task Manager it was nowhere to be seen, not in the icon tray or open as a window. Also I forgot to keep the dome log open in TSX so could not see the time stamp of closure. I will have a check list for the next night out. Also I now realise the pick off mirror obscuring the corner of the camera chip for the main camera so I need to either move where the light is picked off from or move the mirror out slightly without effecting the focus.

OAG Pick off mirror obscuring main camera in corner

I have also now started to process the image and on close inspection to the frames I can see the cloud moving across in the Red channel. Here is the results for the processed image.

M5 Cropped